Duality of Holomorphic Function Spaces and Smoothing Properties of the Bergman Projection

نویسندگان

  • A.-K. Herbig
  • J. D. McNeal
  • E. J. Straube
چکیده

Let Ω ⊂⊂ C be a domain with smooth boundary, whose Bergman projection B maps the Sobolev space H1(Ω) (continuously) into H2(Ω). We establish two smoothing results: (i) the full Sobolev norm ‖Bf‖k2 is controlled by L derivatives of f taken along a single, distinguished direction (of order ≤ k1), and (ii) the projection of a conjugate holomorphic function in L(Ω) is automatically in H2(Ω). There are obvious corollaries for when B is globally regular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic Besov Spaces on Bounded Symmetric Domains, II

The paper continues the study of a class of holomorphic Besov spaces on bounded symmetric domains which was initiated in [18]. Several new descriptions of these Besov spaces are given in terms of weighted Bergman projections and fractional differential operators. These new characterizations are then applied to obtain results about the duality of, and Hankel operators on, weighted Bergman spaces...

متن کامل

Composition Operators and Isometries on Holomorphic Function Spaces over Domains in C

Let D be a bounded domain in C with C boundary. Many holomorphic function spaces over D have been introduced in last half century, such as Hardy, Bergman, Besov and Sobolev spaces. Properties (boundary behaviour ect.) of functions in those function spaces have been received a great deal of studies. Readers can see parts of them from the following books [26] [29], [66], [71], [75], [76] and refe...

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Double Integral Characterization for Bergman Spaces

‎In this paper we characterize Bergman spaces with‎ ‎respect to double integral of the functions $|f(z)‎ ‎-f(w)|/|z-w|$,‎ ‎$|f(z)‎ -‎f(w)|/rho(z,w)$ and $|f(z)‎ ‎-f(w)|/beta(z,w)$,‎ ‎where $rho$ and $beta$ are the pseudo-hyperbolic and hyperbolic metrics‎. ‎We prove some necessary and sufficient conditions that implies a function to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011